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Diffraction symmetry is in general specified by the point group of a crystal. However, there are some ex- 
ceptional cases in which the diffraction symmetry becomes, other than as a result of Friedel's law, higher 
than the point-group symmetry (diffraction enchancement of symmetry). Usinga general expression for the 
square of the structure amplitude, the necessary conditions for the diffraction enhancement have been 

systematically investigated for the following four kinds of structures: (1) crystals composed of essenti- 
ally the same substructures, (2) different substructures which have the same symmetry, (3) substructures 
with the same point group and different space groups, and (4) substructures with isomorphic point 
groups. It has been shown that symmetry enhancement like 4/m, 4/mmm, 3ml (-Jim), 6/m or 6/mmm 
does occur in addition to 2/m or mmm as suggested by Sadanaga & Takeda [Acta Cryst. (1968) B24, 144] 
and by Marumo & Saito [Acta Cryst. (1972) B28, 867] 

Introduction 

The diffraction symmetry or Laue symmetry is in 
general, except for the addition of a centre of inversion, 
uniquely determined by the point group of a crystal. 
Let us suppose that a position x' in a unit cell is gener- 
ated by the operation of a 3 x 3 rotation matrix R on a 
position x, followed by the addition of a translation 
vector t: 

x ' = R x + t .  (1) 

Then it can be shown that 

F(h') = F(h) exp ( -2 rc ih .  t ) ,  (2) 

h ' - - /~h ,  (3) 

where F(h) is the structure amplitude of the reflexion 
with index h, and /~ is the transposed matrix of R 
(Waser, 1955).* Equations (2) and (3) state that symme- 
try-equivalent reflexions are produced by the rotational 
part (including improper rotations) of the symmetry 
operation (1). Therefore, the distribution of equivalent 
reflexions is determined from the point group of the 
crystal alone. When Friedel's law holds, the Laue 
group becomes isomorphic with the direct product of 
the inherent point group and the group ]. 

In this paper we consider the cases in which the 
peculiarity of the atomic arrangement causes a com- 
plete hypersymmetry in the diffraction patterns. Such 
a structure has been described, for example, for one 
of the polytypes of silicon carbide (SIC, type 10H; 
Ramsdell & Kohn, 1951). According to Ramsdell & 
Kohn, this crystal consists of two substructures, 
namely that composed of silicon atoms and that of 
carbon atoms. These substructures have the symmetry 
~m2 and are separated by 3/40 along the c axis. The 

* x = (xyz), xyz as fractions; h = (hkl). 

space group of this crystal is P3ml, while the apparent 
Laue symmetry is 6/mmm. 

Sadanaga & Takeda (1968) have shown that some 
triclinic crystals consisting of a stack of parallel layers 
of two kinds give X-ray diffraction patterns with 
monoclinic symmetry. They called such a phenomenon 
'diffraction enhancement of symmetry'. Their theory 
has recently been re-examined by Marumo & Saito 
(1972) for similar structures. These authors have shown 
that some monoclinic crystals also may produce 
orthorhombic diffraction patterns. 

The aim of the present paper is to deal with the 
theory of the diffraction enhancement of symmetry in 
a more general way and to show that symmetry en- 
hancement like 4/m, 4/mmm, 3ml (31m), 6/m or 6/mmm 
does occur in addition to 2/m or mmm as suggested by 
previous authors. 

Classification of the structures 

Let us consider the crystals composed of several sub- 
structures. The structure amplitude F can be written 
in the form: 

F= ~pFp. exp (2zcih. Up), (4) 

where F, is the component of F from the pth sub- 
structure, and up is the vector from the origin of the 
crystal to that of the pth substructure. Hence 

I= ~plp+½ ~p~[FpF~ exp {2rcih. (up-u~)} 
+F;Fa exp ( -2zc ih .  (up-uq))] ,  (5) 

where I and I, denote IFI 2 and IF~I 2 respectively. The 
summation in the second term is taken over all the 
possible combinations of p and q, except for p = q. 

The first term of equation (5 )g ives  diffraction 
patterns consistent with the lowest symmetry among 
the substructures. The symmetry of the crystal is 
generally lowered by the overlap of the substructures, 
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and the whole diffraction symmetry is governed by the 
remaining part of equation (5). If this term is either 
zero or of the same symmetry as the first term, the 
Laue symmetry is specified by the point group of the 
substructures, irrespective of the crystal symmetry. We 
will examine this second term for four kinds of struc- 
tures separately: 

Type 1. Crystals composed of essentially the same 
substructures. 

Type 2. Crystals composed of different substructures 
with the same symmetry. 

Type 3. Crystals composed of two substructures with 
the same point group and different space 
groups. 

Type 4. Crystals composed of two substructures with 
different but isomorphic point groups. 

The following two conditions are assumed throughout 
the present paper: 

(I) The lattice parameters must be consistent with 
the apparent Laue symmetry which might be enhanced. 
For example, if a triclinic crystal exhibits the Laue 
symmetry of 2/m, two of the angles ~, fl and 7 must be 
90 ° . 

(II) Friedel's law holds. This condition is immaterial 
for the cases of types 1, 2 and 3, but it plays an essential 
role in the case of type 4. 

Type 1. Crystals composed of essentially the same 
substructures 

In the first place let us suppose that all substructures 
have the same symmetry. (The symmetry of some sub- 
structures may be higher than that of the others. In 
that case, the space group of the former must be a 
supergroup of those of the latter. The following dis- 
cussion concerns the lowest symmetry in the substruc- 
tures.) If one of the symmetry elements in the sub- 
structures is represented by the operation (R,t), we 
have 

Fp(h') = Fp(h). exp ( -2zdh .  t ) ,  (6) 

where h'=_Rh. Now let us define the quantity ~00a) by 

¢(h)= ~p~,Fp(h)F*~a) exp (2nih. upq) 
+ complex conjugate, (7) 

where upq = up-n~. Inserting the expression 

Fz,(h) = Ap + iBp (8) 

into equation (7), we get 

¢Oa) = ~p,q[Z(ApA~ + BpBq) cos 2zch. npa 
+2(ApB~-BpAa) sin 2zch. up,]. (9) 

Similarly we have, by using equation (6), 

¢(h') = ~,~q[Z(ApA, + BpB~) cos 2~zh'. upq 
+2(ApBa-BpA~) sin 2rch'. upq], (10) 

where Ap, Bp etc. refer to the index h, not h'. Therefore, 
if following two conditions are satisfied, ¢(h) and ~0(h') 

will have the same value: 

(I) ~p,q(ApBq-BpAo) sin 2rch. npq=0 
for anyh ,  (11) 

(II) cos 2zch. npq=COS 2zeh'. up~ 
for any p, q. (12) 

In such a case, we obtain from equation (5) that 

l(h) =I(h') (13) 

and the diffraction enhancement of symmetry can 
o c c u r .  

The translational part of the symmetry operation 
does not appear in the expression (10). Accordingly, in 
the present case, the problem of diffraction enhance- 
ment can be discussed on the basis of the point group 
of the substructures. If different symmetries are in- 
troduced, a space-group consideration will become 
important. 

Since a full analysis of equations (11) and (12) is 
complicated, we assume first that 

ApBp- B~A~ = 0 (14) 
o r ,  

Bp/Ap= Bq/Aq (14') 

for any combination of p and q. Structures which 
satisfy equations (14) or (14') will be called here 
'type 1'. Now equation (14') means that 
(i) all Fp's have the same or the opposite phase, or 
(ii) all Fp's are real. 
Some of them may be zero. Examples of the structures 
corresponding to the case (i) are: 

(i-a) Fp = £'1 for any p, (15) 

o r  

(i-b) F~,=fp.G for anyp, where G is constant. (15') 

The case (i-a) is that when all substructures are com- 
pletely identical. The case (i-b) corresponds to the 
structure in which the pth substructure consists of 
atoms of only one kind with form factor fp, and all 
substructures have the same geometrical configuration. 
G is the geometrical structure factor. Polytypes of ZnS, 
CdS or SiC may give real examples. The structures 
which satisfy the conditions such as 

(i-a') Fp=cp. ?'1 for any p, (15") 

o r  

(i-b') Fp=cpfpG for any p (15'") 

are also classified in this category if cp is real (including 
zero). The case (ii) is trivial since centrosymmetric 
substructures can only form composite crystals con- 
sistent with the Laue symmetry, as is seen below. 

Since the condition (12) is of great importance for 
the occurrence of diffraction enhancement in the struc- 
tures of other types as well, it will now be examined in 
detail for all possible symmetries of the substructures. 
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Three components of up and upq along the crystallo- 
graphic axes are hereafter designated by up, vp, Wp and 
upq, vp~, wpq respectively. 

(1) General (symmetry -() 
First, let us suppose that the upq's are quite arbitrary. 

In this case the condition (12) is satisfied only if 

h =  +_h'. (16) 

This relation merely represents the usual Friedel's 
law. The crystal is triclinic, and the Laue symmetry 
will be 1. 

(2) Apparent Laue symmetry 2/m 
Suppose that substructures have monoclinic symme- 

try. For convenience, the e axis is taken to be the uni- 

que axis (the first setting). Then, 

I;(hkl) = Ip(hkl) = Ip(hfcl) = Ip(hkl) . (17) 

The enhancement condition (12), therefore, becomes 

cos 2n(hupq + kvpq + lwp~) 
= cos 2n(hupq + kvpq-  lwpa) (18) 

for any combination of p and q. Equation (18) re- 
quires either 

(i) Up=Vp=O, and wp~O (19) 

o r  

(ii) wp = 0; and up, vp arbitrary. (20) 

When equation (19) or equation (20) is satisfied, it 
follows that 

I (hk l )=I (hk l )  (21) 

(a) 

o , /  o . /  
/ o / o / ,  

o 

@ @ 
(b) 

• O 

(c) 
Fig. 1. A simple example of the structure with space group P 1 

which gives the diffraction symmetry  of 2/m. (a) Basic sub- 
structure with the symmetry  2. The twofold rotat ion axis 
is perpendicular  to the plane of  the paper. In order to remove 
the symmetry  m, several a toms are assumed to be stacked 
along the twofold axis. (b) Overlap of  three substructures. 
Ul, u2 and u3 are perpendicular  to the local twofold axes. 
Black, white and shaded circles compose  the substructures 
1, 2 and 3 respectively. If each substructure consists of only 
one kind of  atom, those in 1, 2 and 3 may be different. 
Dot ted  lines indicate a unit  cell of the composi te  crystal. 
(c) A unit  cell of  the composi te  structure. The space group 
is P 1, while the Laue symmetry  is 2/m. 

even if the whole structure is triclinic. 
The case (i) is that when the substructures are 

shifted along the unique axis relative to one another. 
If the point group of the substructures, P~, is either 2 
or 2/m, that of the crystal, P, becomes 2. If P~ is m, 
then P will obviously be in general 1, while the diffrac- 
tion symmetry remains 2/m. This case corresponds to 
the diffraction enhancement of symmetry. The case 
(ii) is that when the substructures are shifted per- 
pendicular to the unique axis. If Ps is either m or 2/m, 
P becomes m. If Ps is 2, then P will be 1 and the crystal 
will produce a monoclinic hypersymmetry in its dif- 
fraction patterns. 

In Fig. 1 a simple but typical example is illustrated. 
The local symmetry P~ in this case is 2. The space group 
of the crystal is P 1 and the Laue symmetry is 2/m. 

(3) Laue symmetry mmm 
If the substructures have orthorhombic symmetry, 

we have 

Ip(hkl) = Ip(hkl) = Ip(hkl) = Ip(hkl) . (22) 

Consequently, if 

cos 2~z(hup~ + kvpq + lwp~) 

= cos 2zc(- hupq + kvpq + lwpq) 

= cos 2zffhu w - kvpq + lwpa) 

= cos 2z~(hup~ + kvpq - lwv~), (23) 

that is, if one of the following three conditions is 
satisfied, the Laue symmetry will be m m m  irrespective 
of P: 

(i) up ¢ 0 ,  vp = Wp = 0 (24-1) 

(ii) vp-¢ 0 ,  up = wp = 0 (24-2) 

(iii) wp-¢ 0 ,  up = vp = 0.  (24-3) 

When Ps is 222 and one of equations (24) is satisfied, 
P becomes 2. When Ps is mm2 (with the polar e axis), 
P is m if case (i) or case (ii) holds, and ram2 if case (iii) 
holds. The first three cases correspond to the diffrac- 
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tion enhancement of symmetry. If P~ is mmm, P will be 
2mm, m2m or ram2 according to (i), (ii) or (iii) respec- 
tively. 

(4) Laue symmetry 4/m 
The symmetry group 4/m is a supergroup_ of 2/m. 

The substructures with the point groups 4, 4 or 4/m 
give intensity relations of the type 

I~,(hkl)= Ip(hfcl) (25) 

as well as those in equation (17). The enhancement 
condition (12) becomes 

cos 27~(hupq Jr- kvpq + lWpq) 
= cos 27ffkuvq- hvpq + lwvq ) (26) 

as well as equation (18). Therefore, 

up = v o = 0 ,  w p - ¢ 0 .  ( 27 )  

If Ps is either 4, 4 or 4/m and the substructures are 
overlapped in such a way that the condition (27) is 
satisfied, P will be 4, 2 or 4 respectively. Thus, mono- 
clinic crystals with the local symmetry 4 may produce 
tetragonal diffraction patterns of the symmetry 4/m. 

(5) Laue symmetry 4/mmm 
The local symmetry of 422, 4mm, 42m (4m2) or 

4/mmm requires the diffraction symmetry of the type 

Ip(hkl)= Ip(khl) . (28) 

It can be easily shown that the enhancement condition 
is given again by equation (27). Conversely, if equation 
(27) is valid, it follows immediately that 

l (hkl)=l(khl)  . (29) 

When Ps is 422, 42m, 4m2, 4mm or 4/mmm, P will be 
4, mm2, mm2, 4ram or 4ram respectively. The first 
three cases correspond to the diffraction enhancement. 
Orthorhombic crystals with point group ram2 and 
tetragonal crystals with 4 may give the diffraction 
symmetry 4/mmm. 

(6) Laue symmetry 3 
Let us consider the substructures which give an 

intensity relation of the type 

Ip(hkl)= Ip(kil)= Ip(ihl) (30) 

where i = - h - k  (hexagonal setting of the unit cell). 
The enhancement condition in this case becomes as 
follows" 

cos 2rc(hup~ + kv~,~ + lwpq) 

= cos 2rc(ku~,q + ivpq + lwpq) 

= cos 2~z(iupq + hvpq + lwpq). (31) 
Hence 

u p = v p = 0 ,  w p ¢ 0 .  (32) 

However, if the local symmetry P~ is either 3 or 3, and 
if the condition (32) is satisfied, the composite crystal 

will have the symmetry 3. Therefore, this case does not 
correspond to the hypersymmetry in the diffraction 
patterns. 

(7) Laue symmetry 3ml, 31m 
Again we choose a hexagonal unit cell. Since both 

3ml and 31m are slapergroups of 3, the condition (32) 
must hold if the diffraction symmetry is enhanced. The 
symmetry of the substructures requires 

for 3ml:  Ip(hkl)= Ip(khl), (33-1) 

for 31m: Ip(hkl)=Ip(kh]). (33-2) 

If the condition (32) holds, the relations 

and 
I ( h k O  = l ( k h l )  (34-1) 

I ( h k l )  = I ( k h l )  , (34-2) 

will be satisfied for 3ml and 31m respectively. When P~ 
is 321 or 312, P becomes 3 and the diffraction patterns 
will show a hypersymmetry. If Ps is either 3ml, 31m, 
3ml or 31m, the crystal symmetry will be 3ml, 31m, 
3ml or 31m respectively, and the diffraction symmetry 
will not be enhanced. 

(8) Laue symmetry 6/m 
The symmetry of the substruct~ares gives intensity 

relations of the type 

Ip( hk l ) = Ip( hk l) (35) 

as well as those in equation (30). The enhancement 
condition is given again by condition (32). When Ps is 
either 6 or 6/m, the crystal symmetry will be 6. If Ps 
is 6, then P becomes 3 and the crystal exhibits hyper- 
symmetry in the diffraction patterns. 

(9) Laue symmetry 6/mmm 
The symmetry of the substructures requires 

Ip(hkl)= I~,(khl) (36) 

as well as equations (30) and (35). The enhancement 
condition is given also by condition (32). Conversely, 
if condition (32) holds, the relations 

I(hkl) = I(khl) = I(hk[) = I(kit) etc. (37) 

are clearly satisfied. If P~ is 622, 62m or 6m2, the crystal 
symmetry becomes 6, 31m or 3ml respectively. These 
cases correspond to diffraction enhancement. The case 
of Ps =6m2 involves the structure of SiC type 10H 
described by Ramsdell & Kohn (1951). If  P~ is either 
6mm or 6/mmm, the crystal symmetry will be 6mm. 

(10) Laue symmetry m3 
The symmetry group m3 is the supergroup of both 

mmm and 3. The condition (32) can be rewritten in the 
form 

Up = vp = Wp ¢ 0 (32') 
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if a rhombohedral setting is taken. Apparent Laue 
symmetry of m3 requires that both condition (32') and 
one of conditions (24) hold at the same time. St~ch 
structures are impossible. 

(11) Laue symmetry m3m 
Since the group m3m is a supergroup of m3, inspec- 

tion of the structures with the hyper diffraction symme- 
try m3m is not necessary. 

The above results are briefly summarized as follows. 
When the composed structure is of type 1, the enhance- 
ment condition is given by (12). Substructures with the 
point-group symmetry 2, m, 222, mm2, -4, 422, -42m, 
-4m2, 321,312, 6, 622, 62m or 6m2 may form composite 
crystals with point group 1,1, 2, m, 2, 4, mm2, mm2, 
3, 3, 3, 6, 31m or 3ml respectively. In such cases the 
resultant Laue symmetry corresponds to the point 
group of the substructures, and not to that of the crys- 
tal. There is no limitation on the number of substruc- 
tures. Centrosymmetrical substructures do not form 
any composite structures which give enhanced diffrac- 
tion symmetry. 

Type 2. Crystals composed of different substructures 
with the same symmetry 

Let us suppose the crystals are composed of different 
kinds of substructures. 

If all substructures have the same symmetry and are 
centrosymmetric, we obtain from equations (9) and 
(10) that 

(o(h) = ~,p~,~2ApA, 7 c o s  2zrh. upq, (38) 

~o(h') = ~p,,~2ApAq cos 2zch'. Upq. (39) 

Therefore, if (0(h) is equal to ~o(h') and if A o and Aq are 
linearly independent, we have 

and 

~0(h) = 211 ~ ,  cos 2rch. u,,,, 

+2/2 ~ p ~  cos 2zch. Upq 

+2(A1A2+B1B2) ~mp COS 2zch. Ump 

+2(A1B2-B1A2) ~m. sin 2~h.  urn. 

cp(h') = 211 ~ , ,~ ,  cos 2~h' .  urn, 

+2/2 ~p~q cos 2zch' . np~ 

+ 2(A1Az + B1Bz) ~,,w cos 2zch'. limp 

+ 2(A1B2- B1Az) ~,,,p sin 2zrh'. u,,p 

(42) 

(43) 

where A1, B1 etc. refer to index h. The subscripts m and 
n run through substructures of the same kind as 1, and 
p and q through those with the same structure as 2. In 
this case, if the relation 

~,,p sin 2zch. limp = 0 (44) 

holds, the problem of diffraction enhancement is 
reduced to the same form as those for type 1. Struc- 
tures composed of two kinds of substructures which 
satisfy the relation (44) will be called here 'type 2'. 

These structures have already been partly inves- 
tigated by Sadanaga & Takeda (1968) and by Marumo 
& Saito (1972). According to these authors, if the crys- 
tal is composed of a stack of two kinds of parallel 
layers, and if the origin of each layer lies on a straight 
line which is not parallel to the layers, diffraction 
enhancement can take place. As Marumo & Saito 
have noticed, the condition on the thickness of the 
layers assumed by Sadanaga & Takeda is unnecessary. 
If the above-mentioned straight line is taken to be the 
e axis, the relation (44) becomes 

~mp sin 2zdwmp=0. (45) 

o r  

cos 2zch. up~ = cos 2~zb'. upq (40) 

upq = 0 .  (41) 

The relation (40) is of the same form as equation (12) 
which has been treated in the preceding section. How- 
ever, according to the conclusions reached there, any 
centrosymmetrical substructures satisfying equation 
(40) form only composite structures which give their 
proper Lane symmetry. Equation (41) is trivial, since 
if np~ = 0 the whole crystal must attain the same symme- 
try of the substructures. 

If the substructures are non-centrosymmetric and 
different, ~0(b) and q)(h') have usually different values. 

However, when the number of kinds of substructlare 
is limited to two, diffraction enhancement is still 
possible. Let us assume that the substructures 1 and 2 
are independent, and that all others are identical with 
either 1 or 2. In this case ~0(h) and ~0(h') can be written 
as follows: 

Marumo & Saito (1972) started from equation (5) for 
such a structure and obtained the relation which is 
essentially equivalent to equation (45) for the condi- 
tion for the occurrence of the hypersymmetry in the 
diffraction patterns [eft equation (4) in their paper]. 
They limited their discussion to the enhanced Laue 
symmetry of 2/m and mmm. According to the present 
analysis, however, the diffraction enhancement like 
4/m, 4/mmm, 31m (3ml), 6/m and 6/mmm also takes 
place in structures of a similar type. The enhancement 
conditions are given in the same form as those for the 
structures of type 1. In the case of the local symmetry 
of 2, it is necessary that all u / s  and vp's are related by 

Hup + Kv, = C, (20') 

where H, K and C are some constants. 
It should be added that the number of each kind of 

substructure in the type 2 structure must be equal to, 
or larger than, 3. 

A C ? 8 A  "~ 
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Type 3. Crystals composed of two substructures with 
the same point group and different space groups 

In the following discussions on the structures of types 
3 and 4, the number of substructures is limited to two. 
First let us consider the structures of type 3, in which 
the point group of each substructure is the same, while 
the space groups are different. (One point group may 
be a supergroup of the other. In this case the following 
discussions concern the lower point-group symmetry.) 
It is assumed that the point-group symmetry of the 
crystal is lower than that of the substructures. 

Because of these assumptions, the rotational parts 
R of the corresponding symmetry elements in the two 
substructures are always the same, while the transla- 
tional parts t may be different. Now let us examine the 
case of h ~ t2. 

Suppose that the reflexions h and h' are equivalent 
owing to the symmetry elements (R,h) and (R, t2). 
Then, 

Fj~a')=Fj(h) exp (-2~zih.  tj), j= 1,2. (46) 

Inserting equation (46) into equation (9), we obtain 

~00a) = F~'(h)F2(h) exp (2rcih. u) 
+ complex conjugate (47) 

~o(h') =r~'(h)F2(h) exp [2z~ih. (h- tz)]exp (2zrih'. u) 
+ complex conjugate (48) 

where u = u l -  u2. In order to make discussions simpler, 
we assume here that u = 0. (This is not always valid and 
may impose severe limitations on the following con- 
clusion.) Now we obtain, by using equation (8), 

(o(h) = 2(A1A2 + BIB2), (49) 

(oqa')=2(A1Az + BIB2) cos 2zh .  ( h - t z )  
-2(A~B2-B~A2) s in2zh .  ( h - t z ) .  (50) 

If these two quantities have the same value, the diffrac- 
tion enhancement of symmetry will be observed. For 
example, let us suppose that 

cos 2zch. ( t a - t 0  = 1 (51) 

for particular reflexions h. Hence the sine part of (50) 
is zero. Reflexions which satisfy equation (51) always 
exist, since the three components of tj along the cell 
edges are generally rational numbers. Since h differs 
from t2 for several symmetry elements, equation (51) 
does not hold for some reflexions. Accordingly, we 
must postulate further that either Fx or F2 (or both) is 
zero when the relation (51) breaks down. When these 
conditions are satisfied, the diffraction symmetry will 
correspond to the point group of the substructures. 

We can point out a plausible example. In tetragonal, 
trigonal or hexagonal systems, some substructures may 
have mm symmetry, in which the mirror planes are 
parallel to the c axis. The overlap of two substructures 
may cause the disappearance of this mm symmetry. 

Examples of combinations of the space groups of sub- 
structures are as follows: 

P 42mc and P 42cm 

P42/mmc and P42/mcm 
P 42/nmc and P 42/ncm 
P63mc and P6acm 
P63/mmc and P6a/mcrn 

(The point group of the sub- 
structures is 4mm; the space 
group of the composite crys- 
tal is P42) 
(4/mmm; P42/m) 
(4/mmm; e42/n) 
(6ram; P63) 
(6/mmm; P63/m). 

With these combinations, diffraction enhancement of 
the type 

I(hkl)=l(khl) (52) 

can occur. 
Several hypothetical structures which have such 

properties have already been described by the present 
author (Iwasaki, 1971). They are characterized by the 
special values taken by the atomic parameters and a 
proper interaction of the extinction rule for the re- 
flexions from each substructure. Here we will be con- 
cerned with two typical examples. 

Consider a structure composed of two substructures, 
one having symmetry P42mc and the other, P42cm. 
The former consists of atoms in (0, ¼, z; 0, l ,  z; ¼, 0, z + ½; 
¼,0,z+½) and the latter, atoms in (¼,¼,z", ¼,a4,z,., 
4x, k , z  , + ½ ;  1_ , 1 ¼, a,Z +2). The parameters z and z' are 
arbitrary and both substructures may contain several 
independent atoms. The structure has neither mirror 
nor glide planes as a whole, and the space group is 
P42. On calculating structure factors, we easily obtain 

F1 ~exp  (2rcilz). [cos (zek/2) + ( -  1) z cos (zch/2)], (53) 

Fz ~ exp (2rcilz'). {cos [ze(h + k)/2] 
+ ( -  1)z cos [n (h-  k)/2]}. (54) 

From these relations, we find immediately 

I(hkl)=I(khl) (55) 

for any integral values of h, k and l. This means that 
the Laue symmetry is 4/mmm, and not 4/m. 

The second example is offered by a structure with 
space group P63. The substructure 1 consists of atoms 
in (½,0,z) and its equivalent positions, and the sub- 

' .  1 2_ , r '  structure 2, atoms in (~,½,z , 3,3,- +½). In this case 
the Laue symmetry becomes 6/mmm. A structure of 
this kind exists actually, for example, in WAls (Adam 
& Rich, 1955), and in the hexagonal modification of 
BaFe407 (Okamoto, Okamoto & Ito, 1972). 

Type 4. Crystals composed of two substructures with 
isomorphic point groups 

A slightly different but similar type of combination of 
substructures will also cause diffraction enhancement. 
In this case, the point groups of the two substructures 
are isomorphic, but they are distinguished by the 



H I T O S H I  I W A S A K I  259 

arrangements of the symmetry elements referred to the 
crystallographic axes. These local point groups must 
be specified without changing the origin of the unit 
cell. (We assume here that u=O.) Examples of the 
combinations of the symmetry in the substructures are 
as follows: 

42m and 4m2; 
31m and 3ml (and also 31m and 3ml ; 321 and 312); 
6m2 and 62m. 

One of the members of these pairs may be replaced by 
a supergroup of itself. In above examples, the point 
group of the crystal will be lowered to 4, 3 (or 3) and 6, 
but there are some possibilities of the diffraction symme- 
tries 4/mmm, 6/mmm and 6/mmm respectively oc- 
curring. 

Let us consider a simple example of this type. One 
substructure 1 is formed by atoms in (0,¼,z; 0,¼,z; 

.!_ ' ¼,0,~; 3,0,~) and the other, 2, by atoms in (¼,4,z ; 
¼ , 3 , z ,  3 - , .  1 - ,  ," ¼, ~, z , ¼, ~, z ). The space group is P4. For this 
structure we find 

F I = 0  (if both h and k are odd) ,  (56-1) 

Fz=O (if h + k  is odd) ,  (56-2) 

Fl(hkl)=F~(khl) and Fz=real  
(if both h and k are even). (56-3) 

Therefore, the relation (52) holds for any parity of h 
or k, and the Laue symmetry becomes 4/mmm. 

However, when Friedel's law does not hold, (56-3) 
breaks down. Furthermore, it can be ascertained that 

F(hkl) ¢ F(khi) . (57) 

Hence the hypersymmetry does not appear in the dif- 
fraction patterns. 

Partial enhancement of diffraction symmetry 

When the symmetry of each constituent substructure 
is the same and all components of the up vectors are 
expressed as rational fractions of the cell edges, the 
relation (11) holds for some particular reflexions ir- 
respective of the contents of the substructures. For 
these reflexions, the diffraction symmetry is partly 
enhanced as a result of condition (12). Even if condi- 
tion (12) does not hold, reflexions which satisfy rela- 
tions (11) and (12) simultaneously do exist with parti- 
cular kinds of indices. These cases correspond to the 
partial enhancement of diffraction symmetry. 

Partial enhancement can also take place in structures 
similar to those of types 3 and 4. For example, suppose 
a crystal is composed of two substructures with the 
same point group. If F1 and F2 are always non-zero, 
then equation (51) holds only for several special re- 
fexions. The diffraction symmetry is not enhanced for 
other kinds of reflexions. 

Concluding remarks 

When the diffraction symmetry is enhanced, it is 
impossible to deduce the correct point group from the 
symmetry of the observed diffraction patterns alone. 
The usual procedures for determining the space 
group are only applicable to the cases of ordinary dif- 
fraction symmetry. The symmetry in Patterson space 
is also enhanced in the case of the hypersymmetry. 

There seems to be no general rule for the deduction 
of the correct symmetry other than the structure 
analysis itself. It is occasionally stated that 'no struc- 
ture could be found in the space group which is in agree- 
ment with the observed intensities'. This statement is 
equivalent to saying that the inherent crystal symmetry 
is responsible for the observed diffraction symmetry. 

If  the structure is of type 1, at least two important 
characteristics are involved in the intensity data. The 
first of these is the overlap of heavy peaks in the 
Patterson maps. Gross peaks will be found at the posi- 
tion corresponding to the interatomic vector ups, and 
also at its symmetry-related positions (here symmetry 
refers to those in the substructures). If  the number of 
substructures (Ns) is 2, the height of these peaks will 
be about half that of the origin peak. The second 
characteristic is somewhat related to the general fea- 
tures of the intensity distribution. If Ns = 2 and F1 = F2, 
we obtain from equation (5) 

I(hkl)=ll(hkl). cos 2 (nh. 1112 ) . (58) 

Equation (58) means that the distribution of the inten- 
sity I is the same as that of/1 except that it is modulated 
by a function cos 2 (nh.  u12). If  the substructures are 
relatively simple, the true composite structure can be 
deduced by a close examination of the intensity data. 

The other possibility of finding the correct symmetry 
is mainly connected with the knowledge of the intensity 
distribution at off-Bragg points. If  the structure is of 
the so-called 'OD-structure',  it is possible to determine 
the correct symmetry by an appropriate interpretation 
of the disorder-type diffuse scattering (Dornberger- 
Schiff, 1956, 1957; Dornberger-Schiff & Grell-Nie- 
mann, 1961). The occurrence of hypersymmetry in the 
cases of types 3 and 4 is almost always ascribed to the 
fact that the indices are whole numbers. Therefore, if 
non-integral reciprocal points are examined, they will 
reveal the true crystal symmetry and will not exhibi- 
the diffraction enhancement. If  each diffraction max- 
imum is accompanied by a spherically symmetric 
Laue function, the shape of the foot of the Bragg peak 
will perhaps show the correct point-group symmetry. 
This method cannot be applied to structures of types 
1 and 2. 

The phase relationships among the symmetry- 
equivalent reflexions are given by equation (2). If  such 
a relation is lacking, the equality in the intensity must 
be regarded as merely accidental. The presence of a 
centre of inversion can be detected by a statistical 
treatment of intensities or by an anomalous dispersion 

A C 2 8 A  - 3 *  
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method. These techniques can be used for finding the 
correct crystal symmetry in the case of structures of 
type 4. 

Structures of other types produce diffraction 
patterns with enhanced symmetry even when Friedel's 
law does not hold. Furthermore, in the case of type 3, 
the diffraction enhancement also occurs in centro- 
symmetric structures. For example, if a centre of inver- 
sion is added to the structure with the symmetry P42 
described above, the resultant structure will belong to 
the space group P42/m, and the diffraction symmetry 
will become 4/mmm. 

The phenomena of the occurrence of hypersymmetry 
in diffraction patterns (diffraction enhancement of 
symmetry) will be encountered actually, though 
seldom, in crystal-structure analysis, especially in the 
case of inorganic compounds. The space group must 
not be determined by a cursory glance at the apparent 

diffraction symmetry. It is, in general, dangerous to 
assign atomic parameters by a naive comparison of Z 
with the number of general positions required by such 
a space group. Disregard of the Laue symmetry will 
sometimes be necessary to attain the correct structure. 
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The X-ray Structure Factors of Strontium Chloride Powder at 300 ° K and 80 ° K Analysed 
in Terms of Non-spherical Atoms 
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The X-ray structure factors of SrCI2 powder have been measured with Cu K~ radiation at 300 and 
80 °K for 25 reflexions, including the faint ones, which in the fluorite structure obey the relation h + k + l 
= 2(2n+ 1). The absolute scale was determined by comparing the intensities with those measured for 
a NaCI specimen. The overall agreement between the measured and calculated structure factors was 
good. The Debye-Waller coefficients were Bsr= 1.30+ 0.05, Bc~ = 1.47_+ 0.05 A 2 at 300°K and Bsr= 
0.42_+ 0"05, Bcl =0.50+ 0.05/12 at 80°K. For the length of the unit-cell edge the values 6.9783 + 0-0004 
and 6.9442_+ 0.0004 A were obtained at 300 and 80°K respectively. An analysis based on the spherical 
harmonic expansion shows the electron distribution around the cation and the anion to be almost 
spherically symmetric. Some traces of tetrahedral deformation in C1- seem, however, to be present. 

1. Introduction 

The structure of strontium chloride has been found to 
be similar to the calcium fluoride structure (Mark & 
Tolksdorf, 1925). As the number of electrons in Sr 2 ÷ is 
twice as large as that in CI- ,  the reflexions h + k + l =  
2(2n-1) ,  n =  1,2, 3 , . . . ,  are very weak, their intensity 
being less than 1% relative to the intensity of the 
strongest (220) reflexion (Swanson, Fuyat & Ugrinic, 
1955). The edge of the unit cell has been measured to 
be 7.01 A (Mark & Tolksdorf, 1925), 6.979 A (20°C; 
Ott, 1926) and 6-9767 A (26°C; Swanson, Fuyat & 
Ugrinic, 1955). 

Thermal vibrations in fluorite structures have been 
studied with both neutron and X-ray diffraction. Some 
neutron-diffraction results have been analysed by 
Dawson, Hurley & Maslen (1967), who report anhar- 
monic thermal vibrations in UO2, ThO2 and CaF2 
associated with the tetrahedral symmetry of the 
anionic sites. Cooper (1970) analysed single-crystal 
X-ray measurements for CaF2 and found anharmonic 
components consistent with the neutron results. Cal- 
culations by Cooper & Panke (1970) based on X-ray 
diffraction measurements for Mg2Si gave similar re- 
sults. Non-spherical deformations of the ions in CaF2 
have been studied by Kurki-Suonio & Meisalo (1966) 


